Greenhorns to Gurus: Field Staff supervision strategies

Chris Benson, 2015 Wilderness Risk Management Conference
benson.topher@gmail.com

Abstract

From Greenhorns to Gurus, field staff have a wide range of skills and experience. However, some research (Schimelpfenig et al, 2007) has shown that there is not a strong relationship between staff experience and incident rates. Aviation accident data may serve as an analogue to better understand the more dangerous periods in field staff’s development. “Risk homeostasis” may also be occurring as staff competency and objective hazards of programs increase. To better address this, a model is presented to understand the types of mistakes and biases, as well as strengths staff have with varying levels of experience, consciousness, and competence.

<table>
<thead>
<tr>
<th>Greenhorn</th>
<th>Portentious Pilot</th>
<th>Skilled Intermediate/False Master</th>
<th>Guru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths:</td>
<td>Some experience is better than no experience. Many with low experience are more risk-averse. May begin to incorporate new curricula or facilitation vs. simply memorizing/shaping/learning manual or emotional scripts. May be more experienced with non-normal events.</td>
<td>Considerable experience is better than no experience. May use more methods and mentor others.</td>
<td>10,000+ hours of experience. Able to use multiple methods and mentor others.</td>
</tr>
<tr>
<td>Weaknesses:</td>
<td>Risky to take shortcuts. Often overestimates abilities. Can be heavily influenced by others. They may have worked with other staff in the past. Sometimes involved in more power struggles with peers. Usually attached to specific methods. Non-event feedback does not respect risk. May not recognize all risks, and underwrite some.</td>
<td>Can demonstrate ability. Can understandability ability in the “oldsters” of the learning environment.</td>
<td>Needs to balance exposure to risk because of cumulative exposure.</td>
</tr>
<tr>
<td>Strategies/for management:</td>
<td>Focus on normal operations and sense making.</td>
<td>Focus on normal operations and sense making.</td>
<td>Focus on normal operations and sense making.</td>
</tr>
</tbody>
</table>

Concept Graph:

This graph presents a concept of how field staff’s experience, consciousness, and competence are related. Field days are noted on the x-axis, consciousness on the y-axis and competence on the z-axis. Note that, many staff probably develop along the suggested curve, in which they encounter two significant “false summits” in their development. The first is the “Portentious Pilot” peak, where most accidents occur in aviation. The second is the Skilled Intermediate/False Expert phase, where it takes significant experience coupled with a focused effort on increasing one’s consciousness to become a “Guru.” Work by M. Gladwell and others suggest that about 10,000 hours is needed to produce an expert. Experience: the process of doing and seeing things and of having things happen to you, the length of time that you have spent doing something (such as a particular job).

Conclusion

Field staff can become skilled and effective along a growth curve that is not linear. If we use aviation as a rough analogy (1 hr flight = 10 hrs in the field, 10hrs/day), staff may be in the most dangerous period between 50-350 days in the field. Supervisors can use briefing and debriefing techniques with staff teams to leverage learning opportunities, help recognize “non-event” feedback, and consider using a common language to identify different stages of staff development. Because senior staff may be working more difficult and challenging courses/environments, incident rates may be similar to less experienced staff teams in more benign environments. This Risk Homeostasis effect predicts that through time, as skill and judgment increases, senior staff are assigned more challenging and hazardous contracts. Further studies would benefit from close tracking of field staff’s experience and the severity and types of incidents that tend to occur.

References:

Figure 1.1 Total fatal accidents—private and student pilots, 1983 to 1999.

Does Aviation Accident data have lessons to tell us? Aviation may shed light on managing risk in complex environments. In his book, “The Killing Zone” Paul Craig presents data that suggests that the time when pilots have 50 to 350 hours is the most dangerous period. This data set may be able to serve as an analogue to better understand the relationship of staff experience and accidents in outdoor programming.

Key questions to increase staff consciousness:
1. How much experience do you or your team have in this field area/subject/program/working together?
2. What decisions will you/your team make? What is your greatest risk management concern? What was the most hazardous thing you did on course? Would you do it again? Why do you think that is/ was the right decision?
3. How will/were the decisions in your staff team be made?
4. What significant incidents has the program or other entities encountered? Injuries, fatalities, near misses?
5. What is the goal of the program? How much risk will you be taking to meet this goal? Did you meet the outcomes of the course? What risks did you create to achieve these goals?

Does staff experience make a difference in evacuation rates? A study by Schimelpfenig, Leemon, et al (NOLS Data) in 2007 compared medical evacuation data to field staff team experience. The study looked at courses in the Wind River Mountains and sampled 85 courses. The study concluded: “…the study found no significant relationships between course leader or instructor team seniority and evacuations and risk management incidents.”

Does staff experience make a difference in evacuation rates? A study by Schimelpfenig, Leemon, et al (NOLS Data) in 2007 compared medical evacuation data to field staff team experience. The study looked at courses in the Wind River Mountains and sampled 85 courses. The study concluded: “…the study found no significant relationships between course leader or instructor team seniority and evacuations and risk management incidents.”

Figure 1.1 Total fatal accidents—private and student pilots, 1983 to 1999.