

SCIRA: A Risk System Management Tool

WRMC Oct. 2009

Jeff Jackson

Professor, Coordinator
Outdoor Adventure Programs
Algonquin College in the Ottawa Valley

Bottom line:

- 1. Role coupling and complexity plays in errors and system resilience.
- 2. SCIRA as a tool to measure system resiliency.
- 3. Recognize leverage points for improving system resilience and organizational performance.

Managing Risk Systems Planning for Outdoor

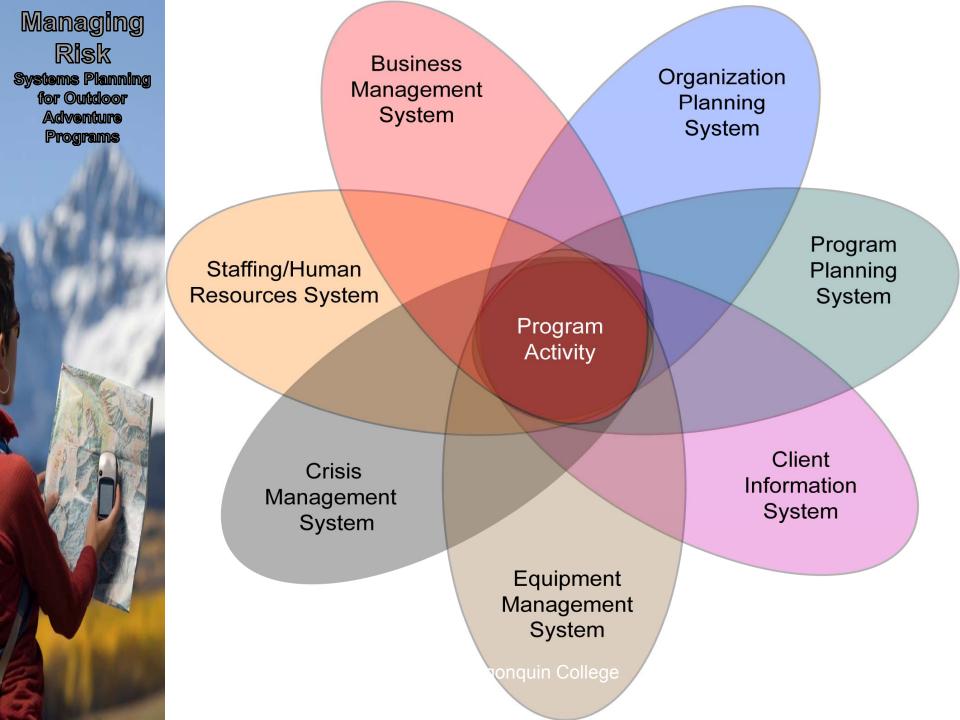
Agenda

SCIRA worksheets

Systems for organizing risk planning

Coupling and Complexity

SCIRA as a risk system management tool



SCIRA worksheets

- 5 minutes to fill in worksheets
- Score 1-5 on each

Goal: familiarize
 (accuracy secondary)

Full article and index factor interpretation: www.riskmanagementconsulting.ca

Systems Organizing Risk Planning

Trigger/event based:

Field based

History / experience based System based:

- Top down / bottom up
- Risk tolerance based

Systems Organizing Risk Planning Scope and language:

System: an organized and highly integrated arrangement of parts operating towards a specific goal.

Risk management is a systems based approach to sustainably managing uncertainty within an operating environment.

Measuring System Resiliency: Error Management:

Active errors:

Latent errors:

- Guide slips, lapses, mistakes
- 'sharp end'
- Focus of trigger/event based RM

- Dormant, long term conditions
- 'blunt end'

 Focus of systems based RM

Measuring System Resiliency: Latent / System errors

"Be suspicious of operator error..." as it is often the easy target in an unclear scenario

60-80% of system errors are blamed on the operator (Perrow, 1990)

"...latent errors pose the greatest threat to the safety of a complex system." (Reason, 1990)

Managing Risk Systems Planning for Outdoor Adventure Programs

Loosely Coupled	Tightly Coupled
Slack: time, resources, options	No slack
Time between decisions	No time, rapid succession
Time to correct	No time to correct
Many options per decision	Few options
Flatwater paddling	Continuous class V

Operational Coupling:

= Fast paced, high volume, tightly managed

Managing Risk Systems Planning for Outdoor Adventure Programs

Linear system	Complex system
Easy to explain	Detailed, complicated
Single goal or process	Multiple goals, processes
Predictable outcome, even if unplanned	Unanticipated interactions when sequence fails
Failure can be isolated	Failure compounding
Climbing bolted 5.6 route	Exploratory first ascent of remote mountain range
Owner/operator canoe trip company	Large scale international adventure company

Measuring System Resiliency: Failure Detection (fD)

 Experience under stress = ability to recognize failure

 Failure detection does not directly prevent accidents or injuries

SCIRA

- Quantifies system complexity
- Indicator of system failure potential

coupling + complexity = risk of failure

(Perrow, 1990)

NOT a measure of system efficacy!!

Managing Risk Systems Planning for Outdoor Adventure **Programs**

SCIRA values

Cp x Cx x fD

Cp = coupling ()

Cx = complexity ()

fD = failure detection (1)

 $SCIRA = (Cp) \times 2(Cx) \times 0.6(fD)$

SCIRA values

Samples from delegates

SCIRA can:

- 1. Assess system complexity and system failure potential.
- 2. Target system improvements and models system change.
- 3. Benchmark system complexity against other programs or operations.

Leverage points:

- Start here for system improvements
 - Research based

- Minimize '5' scores:
 - is it fixed or open to change?

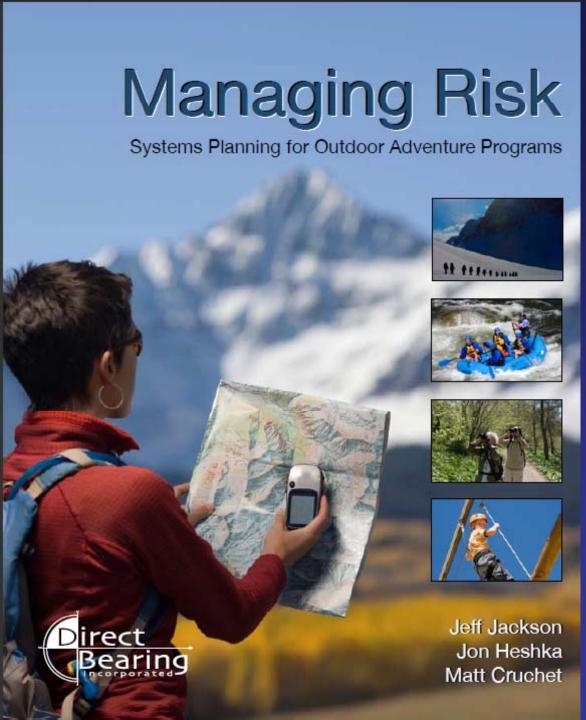
To do list / key learning

- 1. Cp: align w risk tolerance purposeful slack
- 2. Cx: recognize complexity (creep) manage efficiency v. complexity
- 3. fD: red flag test, train, info share

Bottom line:

- 1. Role coupling and complexity plays in errors and system resilience.
- 2. SCIRA as a tool to measure system resiliency.
- 3. Recognize leverage points for improving system resilience and organizational performance.

References / further reading


Jackson, J. (2009) SCIRA: A Risk System Management Tool, available at www.riskmanagementconsulting.ca

Jackson, Heshka, Cruchet (2010) *Managing Risk, Systems Planning for Outdoor Adventure Programs*, Direct Bearing Inc., Palmer Rapids, ON.

Perrow, C. (1999) *Normal Accidents, Living with high risk technologies.*Princeton University Press, Princeton, N.J.; reprint of 1984 Basic Books.

Reason, J. (1990), Human Error, Cambridge University Press, New York, NY.

Senge, P. (1990). The Fifth Discipline: the art and practice of the learning organization. Doubleday, New York, NY.

Available Jan. 2010

www.riskmanagementconsulting.ca